
20 things you should never do
in jetpack compose

This list is for all mobile developers who use the modern UI
framework Jetpack Compose for building their app’s UI.

You can either use this to just learn about the mistakes to avoid
them in future or to take this as a checklist and make sure your

existing projects don’t contain any of these mistakes.

Please note: For the sake of simplicity, the code snippets shown
here only deal with the mistake shown in each case and do not

claim to avoid all other mistakes as well.

1 calling non-compose code in composable functions

Bad

Good

This is a classic, but huge mistake of many Compose beginners. Whenever a composable gets
recomposed (that means a state value this composable uses is changed), the composable functions gets
called again. In general, composable functions can be called at any time and in any order.

If you now put non-Compose code in a composable function - that means calling a function without
@Compose annotation in a function with @Compose annotation - this function could be executed a lot of
times.

Take a look at the following example:

Whenever this BookingList
composable is recomposed, it will launch a
new coroutine and load bookings with a
long running network call. That’s terrible of
course.

Make use of the effect handlers of Jetpack
Compose such as LaunchedEffect,
DisposableEffect, etc. There’s a
dedicated video on Philipp’s YouTube
channel about this topic.

2 Using mutablelist as a state

Bad

Good

Misunderstanding how Compose state works, can lead to lots of bugs and unexpected behavior. Take a
look at this example:

After a click on the button, a name will be
added to the list. However, the actual list will
not be recomposed, since Compose can’t
detect changes in mutable data types such
as MutableList.

Instead, make the state an immutable list.
Whenever a state is completely changed
and replaced with a new value, Compose
will detect the change and recompose any
composables that use that state.

You can manipulate immutable lists the
same way as mutable lists, just that with
every change a new instance of the list is
created.

3 Creating state with remember

Bad

Good

A very common way of creating state in Compose is by using remember. That itself is correct, since it
won’t recreate the state on every recomposition due to remember. But, in real apps you should always think
twice if this can’t backfire, since remember will only cache the value across recompositions as long as
there is no configuration change or process death involved. Take a look at this:

As soon as there is a configuration change
here (e.g. the user rotates their screen), the
emailText state will be reset to an empty
string again and the text field will be empty.

Quite frustrating for the user, huh?

Instead, we recommend to save your state in
ViewModels or if you really want to have
the state inside your composables to use
rememberSaveable which will survive
configuration changes.

Inside your ViewModel, you then have the
option to make use of SavedStateHandle
to restore the state after process death.

Then simply instantiate your ViewModel in
the NavHost and pass down the state you
need for the screen.

This is how the updated LoginScreen
would look like when using a ViewModel.

4 not using keys inside a lazy column

Bad

Good

Whenever a list used for a LazyColumn is updated, the LazyColumn doesn’t know which items changed,
so it will just update and recompose all visible ones.

When the notes change, every visible
composable in the LazyColumn will be
recomposed.

Instead, make use of the keys lambda to tell
the LazyColumn how to uniquely identify
each item, for example by each note’s ID.
That way the LazyColumn will only
recompose the items that actually
changed.

Bonus: You can also easily animate list
changes that way with the
animateItemPlacement() modifier.

5 Using unstable classes from external modules

Bad

Good

Compose has the concept of stability and unstability. In short, a class is marked as stable by the Compose
compiler if all these conditions are true for this class1

$C The result of equals() will always return the same result for two instance;
2C When a public property of the type changes, composition will be notifiedC
�C All public property types are stable.

However, what many people don’t know: If you use classes from external modules or libraries that don’t use
Compose, these classes are unstable by default.

This app uses an external non-Compose
module. This could also just be a normal
non-Compose library added as a
dependency.

Let’s now assume, this module includes this
User model.

This User model is now used inside a
composable. Normally the composable
would only recompose if the user model or
a field inside actually changed.

However, since classes from external non-
Compose modules are unstable by default,
all composables that use this user instance
will be recomposed with every change of
any field of the user model.

Create a mapper that maps the library’s
user model to a user model inside your
Compose module, since that will be
considered stable if above’s conditions are
met (because the module uses Compose)

Then use this Compose user model inside
your composable to only let it recompose
when things actually changed.

6 consuming flows with collectAsstate()

Bad

Good

In Compose, we can transform a Flow to a Compose state with the collectAsState() function.
However, better avoid this function in Android projects, since it doesn’t know anything about the lifecycle of
your Activity. That means when your Activity goes in the background, the underlying Flow will still
be executed, even though the user doesn’t see the changes on the UI.

Note, that this does not affect StateFlows created with asStateFlow(), but rather only those created
with stateIn().

Even, if your app is in the background, the
counter Flow will be executed and will run
its DB operations, which is often not what
you want, if a state is only about updating
the UI with some side-effects (such as the
DB call).

You can use
collectAsStateWithLifecycle() to
get a lifecycle-aware Flow collector which
will not run when the app goes in the
background.

7 Animating transform outside of graphicslayer

Bad

Good

When it comes to transform animations (rotation, scale, position) in Compose, there are multiple ways to do
that. You can either use the transform modifiers directly or the graphicsLayer modifier. Let’s see why
using the modifiers directly is an issue:

Whenever rotationRatio changes
(which is many times a second), the Box
composable will be recomposed since it
uses a state that changed (which is the
rotation ratio).

Composables shouldn’t be recomposed if
their appearance doesn’t change. The
composable will look exactly the same
after a rotation, it’s just a bit rotated.

Therefore, you can make use of the
graphicsLayer modifier which will have
the same effect, but won’t cause these
hundreds of recompositions.

Therefore: If clipping, transform or alpha
changes -> use graphicsLayer

8 Creating viewmodels on screen level with hilt

Bad

Good

ViewModels are the typical way to store and manage state on Android. Yet, you’ll see many examples
online where a ViewModel is instantiated and used like this:

As soon as your ViewModel has injected
dependencies in its constructor, this will
break the preview and isolated UI tests,
since this screen can’t be used in isolation.
The reason is that in order to use this
screen, it always needs context to the rest
of the application and the Dagger-Hilt
modules to create an instance of the
ViewModel.

We recommend to structure your
ViewModels like on the left for Compose
projects.

Each ViewModel holds a screen state
instance and exposes an onEvent
function which receives the different UI
actions a user could perform on the screen.

Then, instead of passing the ViewModel
instance to the screen, you just pass down
the state and an onEvent lambda, so
you can easily instantiate this screen for
your preview and UI tests without having a
ViewModel instance.

After that, you just need to create an extra
composable which wraps around each
screen where you can safely instantiate a
ViewModel, since this screen doesn’t
need a preview or isolated UI tests.

9 setting expanding sizes in sub-composables

Bad

Good

Modifiers in Compose are powerful, yet they are also often misused. One major goal of Compose
should be to make your components as reusable as possible. However, you often see something like this:

We recommend to avoid using expanding
size modifiers at the outermost
composable for reusable composables.

In the example at the left, you can see the
fillMaxWidth() modifier being used on
a styled button which might be reused
across the app.

However, the fillMaxWidth() modifier
forces every single button to always fill the
whole width of the parent composable
which prevents you from placing two
buttons next to each other without
workarounds.

Better don’t hardcode such sizes in the root
modifiers of a reusable composable, but
rather pass them from the outside to keep it
flexible.

You can set fixed sizes to such
composables, if the size is a core
characteristic of this composable and
every instance of it will always look the
same.

The modifier can now easily be applied for
each button individually.

10 not using remember for heavy computations

Bad

Good

The remember function can be used to cache a computed value across recompositions. Pretty useful,
right? Yet, many people don’t use it for heavy computations which causes a low performance of your app
and UI:

Here, the bytes will be
decrypted on every single
recomposition which is a lot
of computation effort.

Better use remember with a
key, so that it gets
recomputed when the key
changes.

Note, that this is just an
example to illustrate this and
something like decrypting
should happen in a
separate class and be
called from your
ViewModel. This can be
applied to heavy UI related
computations as well
though (e.g. evaluating a
complex condition)

11 Overusing hardcoded dp units

Bad

Good

Sometimes, we have composable that just have a fixed size. But very often we also don’t. In these cases,
avoid using hardcoded DP values for a composable’s dimensions and switch to relative sizes using
modifiers such as fillMaxSize(), weight() or widthIn().

This text field will have a width of 300dp on
every screen size. Just because it looks fine
on the one device you tested it on doesn’t
mean it’ll look find on smaller, larger or
tablet devices.

Instead, make use of relative sizes (which
you can also combine with a max fixed size
like on the left).

This text field will now fill the whole width on
phones while not stretching over the whole
screen on tablets which would look weird.
On tablets it’ll have a fixed size of 400dp.

12 forgetting about touch target size

Bad

Good

When creating clickable composables we have to take care of the touch target size. If your composable is
a small one, it might be hard for the user to click on it since it doesn’t have a big area. Consider this when
creating such composables.

An icon is usually smaller than someone’s
finger which is why clicking on it can be
frustrating due to its small surface.

Instead, make use of IconButtons, since
they already take care of this large enough
touch target size.

Of course, this doesn’t only count for
clickable icons, but for any small clickable
composable.

13 Not checking view decomposition strategy in fragments

Bad

Good

Compose offers great interoperability with XML. However, when using a ComposeView inside a
Fragment, make sure to set the correct view decomposition strategy to make sure the composition is
properly disposed. By default, the composition is disposed when the underlying ComposeView is
detached from the window which is desired for pure Jetpack Compose apps. However, when adding
Compose incrementally, this might not be what you want.

Just using a ComposeView like this won’t
make sure that the composition is fully
bound to the Fragment’s lifecycle which
can lead to state loss under certain
circumstances.

Instead, set the view
decomposition strategy to
the one from the left to tie
the composition to the
Fragment’s lifecycle.

Note, that this is only
required in Fragments.

14 mixing state naming

Bad

Good

In UI development, there are 2 ways how you can create and name your state(
1� You name it based on what kind of impact it will have on the U8

"� You name it based on what logical behavior it represents

Which approach you choose is up to you, but it’s important to stay consistent with one approach. Take a
lookg at these examples:

isProgressBarVisible is named
based on (1), since it describes exactly the
impact it will have on the UI (that it will show
or hide a progress bar).

isLoginFailed on the other hand
describes a logical behavior, which doesn’t
directly reveals what kind of impact it will
have on the UI.

The example on the left uses inconsistent
naming, since it uses both approaches for
state naming.

Better stay consistent. In this example,
rename the isProgressBarVisible
state to isLoggingIn, so it also reflects
behavior.

That way, each composable can decide
for itself what it wants to do with this state.

15 forgetting about making columns scrollable

Bad

Good

Sometimes, your screen consists of many composable put in a normal Column. Even though, it’s a static
number of composables with a fix size, you should consider making this screen scrollable. Just because
everything fits on the screen on your test device doesn’t mean everything will fit on smaller devices.
Therefore, make sure to keep your screens scrollable as soon as they have a reasonable size.

If you have lots of composables on a
screen, they might not fit on a smaller
screen.

You don’t do anything wrong with making
content scrollable. Therefore, consider
adding the verticalScroll() modifier
to your outer Columns of a screen.

16 Not naming lambdas in composables

Bad

Good

Lambdas play a major role in Jetpack Compose to react to user actions and hoist state. However, Kotlin’s
feature to inline the last lambda function of a function’s parameter list can make your code unreadable.

Can you tell when the last lambda function
is called and what it is used for?

Unlikely, therefore make sure to name your
lambdas if it’s not very obvious.

Now it should be all clear what the trailing
lambda was used for :)

If a lambda is used to put composable
content it’s often clear when it’s a trailing
lambda. If it’s used as a callback, better use
named parameters.

17 misusing remembercoroutinescope

Bad

Good

With rememberCoroutineScope(), we can get a coroutine scope that is aware of the current
composition. Yet, many people use it the wrong way:

Don’t use a composables coroutine
scope to execute suspend
functions that aren’t UI related. Your
ViewModels shouldn’t expose
suspend functions to the UI, since
this coroutine scope will be
cancelled after a configuration
change such as a screen rotation. In
that case, the login call would be
cancelled as well.

Instead, launch such functions
inside of a viewModelScope
coroutine and update a state when
the suspending call was finished,
such as on the left.

Only use the composable coroutine
scope for executing UI-related
suspend functions such as
triggering an animation or showing
a snackbar.

18
frequently changing state in sub-composable and
graphicslayer

Bad

Good

As we already learnt in (7), state that affects a change in composable’s transform, clipping or alpha should
not need a recomposition, since we can use the graphicsLayer modifier for that. However, if such
frequently changing state is passed down to a sub-composable it can still cause many unwanted
recompositions.

Whenever the user scrolls here, scrollState will be changed which will then trigger a recomposition of
ListItem, since the state changed.

If your state is passed as the result of a lambda instead, you can make the ListItem composable skip the
composition phase and move on right to the layout phase, since the lambda itself doesn’t change and therefore
won’t trigger a recomposition.

This is only relevant when passing state down to another composable function. If you’d inline the content of
ListItem in the for-loop, you wouldn’t need to make this a lambda function.

19 not using content padding of scaffold

Bad

Good

A Scaffold is a layout that helps you to place common Android UI components correctly on the screen,
such as navigation drawers, snackbars or toolbars. Yet, a common mistake is to ignore the provided
contentPadding parameter from the Scaffold:

When the Scaffold contains typical
Scaffold elements such as a
BottomAppBar, this will reduce the size of
the remaining space.

To consider this remaining space in the
Scaffold’s content, make sure to use its
contentPadding parameter, as shown
below.

By applying the paddingValues to the
Box composable, you make sure that none
of the Box content gets hidden behind
Scaffold composables.

20 returning in composable functions

Bad

Good

Avoid using the return keyword in composable functions, since this can lead to undefined behavior when
the composition phase is skipped.

Don’t use return in any form inside a
@Composable annotated function.

Better use let or if-statements for null
checks.

Where to go from here?

the industry-ready developer
bundle

Thanks for reading!

While this shows how incredibly complex Jetpack Compose can be, this framework can also speed up your
work by a lot compared to XML. We from PL Coding definitely see Jetpack Compose not only as the future
of native Android development, but as the future for building UI with Kotlin.

Philipp Lackner

Native Android Developer & Consultant

If you want to learn how you can facilitate the power of
Jetpack Compose to build scalable and industry-ready
apps with it, take a look at this discounted course bundle.

In 3 different courses, you will learn everything you need as
an industry-ready Android developer. This includes�

� Scalable, testable and understandable multi-module
architecture and Compose U�

� How you can build native multiplatform apps with KMM
and Compose UI for Androi~

� Building fully automated test pipelines for your apps to
always make sure they work as expected

Get the bundle and more information about each course
here:

https://pl-coding.com/premium-courses

https://pl-coding.com/premium-courses

